3.336 \(\int \frac{x^2}{(d+e x) (a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=95 \[ -\frac{a e+c d x}{c \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{d^2 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

[Out]

-((a*e + c*d*x)/(c*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) - (d^2*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a
+ c*x^2])])/(c*d^2 + a*e^2)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.111139, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {1647, 12, 725, 206} \[ -\frac{a e+c d x}{c \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{d^2 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

-((a*e + c*d*x)/(c*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) - (d^2*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a
+ c*x^2])])/(c*d^2 + a*e^2)^(3/2)

Rule 1647

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[((a*g - c*f*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{(d+e x) \left (a+c x^2\right )^{3/2}} \, dx &=-\frac{a e+c d x}{c \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\int \frac{a c d^2}{\left (c d^2+a e^2\right ) (d+e x) \sqrt{a+c x^2}} \, dx}{a c}\\ &=-\frac{a e+c d x}{c \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{d^2 \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac{a e+c d x}{c \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{c d^2+a e^2}\\ &=-\frac{a e+c d x}{c \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{d^2 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0970718, size = 95, normalized size = 1. \[ -\frac{a e+c d x}{c \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{d^2 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

-((a*e + c*d*x)/(c*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) - (d^2*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a
+ c*x^2])])/(c*d^2 + a*e^2)^(3/2)

________________________________________________________________________________________

Maple [B]  time = 0.234, size = 311, normalized size = 3.3 \begin{align*} -{\frac{1}{ce}{\frac{1}{\sqrt{c{x}^{2}+a}}}}-{\frac{dx}{a{e}^{2}}{\frac{1}{\sqrt{c{x}^{2}+a}}}}+{\frac{{d}^{2}}{e \left ( a{e}^{2}+c{d}^{2} \right ) }{\frac{1}{\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{{d}^{3}xc}{{e}^{2} \left ( a{e}^{2}+c{d}^{2} \right ) a}{\frac{1}{\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{{d}^{2}}{e \left ( a{e}^{2}+c{d}^{2} \right ) }\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x+d)/(c*x^2+a)^(3/2),x)

[Out]

-1/e/c/(c*x^2+a)^(1/2)-1/e^2*d*x/a/(c*x^2+a)^(1/2)+d^2/e/(a*e^2+c*d^2)/((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d
^2)/e^2)^(1/2)+d^3/e^2/(a*e^2+c*d^2)/a/((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)*x*c-d^2/e/(a*e^2+
c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^
2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.47039, size = 913, normalized size = 9.61 \begin{align*} \left [\frac{{\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} \sqrt{c d^{2} + a e^{2}} \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \,{\left (a c d^{2} e + a^{2} e^{3} +{\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )} \sqrt{c x^{2} + a}}{2 \,{\left (a c^{3} d^{4} + 2 \, a^{2} c^{2} d^{2} e^{2} + a^{3} c e^{4} +{\left (c^{4} d^{4} + 2 \, a c^{3} d^{2} e^{2} + a^{2} c^{2} e^{4}\right )} x^{2}\right )}}, -\frac{{\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} \sqrt{-c d^{2} - a e^{2}} \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) +{\left (a c d^{2} e + a^{2} e^{3} +{\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )} \sqrt{c x^{2} + a}}{a c^{3} d^{4} + 2 \, a^{2} c^{2} d^{2} e^{2} + a^{3} c e^{4} +{\left (c^{4} d^{4} + 2 \, a c^{3} d^{2} e^{2} + a^{2} c^{2} e^{4}\right )} x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((c^2*d^2*x^2 + a*c*d^2)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^
2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(a*c*d^2*e + a^2*
e^3 + (c^2*d^3 + a*c*d*e^2)*x)*sqrt(c*x^2 + a))/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4 + (c^4*d^4 + 2*a*c^
3*d^2*e^2 + a^2*c^2*e^4)*x^2), -((c^2*d^2*x^2 + a*c*d^2)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d
*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (a*c*d^2*e + a^2*e^3 + (c^2*d^3 + a
*c*d*e^2)*x)*sqrt(c*x^2 + a))/(a*c^3*d^4 + 2*a^2*c^2*d^2*e^2 + a^3*c*e^4 + (c^4*d^4 + 2*a*c^3*d^2*e^2 + a^2*c^
2*e^4)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a + c x^{2}\right )^{\frac{3}{2}} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x+d)/(c*x**2+a)**(3/2),x)

[Out]

Integral(x**2/((a + c*x**2)**(3/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.14283, size = 235, normalized size = 2.47 \begin{align*} -\frac{2 \, d^{2} \arctan \left (\frac{{\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} - a e^{2}}}\right )}{{\left (c d^{2} + a e^{2}\right )} \sqrt{-c d^{2} - a e^{2}}} - \frac{\frac{{\left (c^{2} d^{3} + a c d e^{2}\right )} x}{c^{3} d^{4} + 2 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4}} + \frac{a c d^{2} e + a^{2} e^{3}}{c^{3} d^{4} + 2 \, a c^{2} d^{2} e^{2} + a^{2} c e^{4}}}{\sqrt{c x^{2} + a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

-2*d^2*arctan(((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))/((c*d^2 + a*e^2)*sqrt(-c*d^2
 - a*e^2)) - ((c^2*d^3 + a*c*d*e^2)*x/(c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4) + (a*c*d^2*e + a^2*e^3)/(c^3*d^4
 + 2*a*c^2*d^2*e^2 + a^2*c*e^4))/sqrt(c*x^2 + a)